Шаблоны данных очень полезны, когда они нарисованы графически. Шаблоны данных обычно описываются в терминах таких функций, как центр, разброс, форма и другие необычные свойства. Другие специальные описательные метки являются симметричными, колоколообразными, скошенными и т. Д.
Центр
Графически, центр распределения расположен в медиане распределения. Такая графическая диаграмма показывает, что почти половина наблюдений находится с обеих сторон. Высота каждого столбца указывает на частоту наблюдений.
распространение
Распространение распределения относится к изменению данных. Если набор наблюдений охватывает широкий диапазон, разброс будет больше. Если наблюдения сосредоточены вокруг одного значения, то разброс меньше.
форма
Форма распределения может быть описана с использованием следующих характеристик.
-
Симметрия. При симметричном распределении график можно разделить в центре таким образом, чтобы каждая половина была зеркальным отражением другой.
-
Количество вершин. — Распределения с одним или несколькими пиками. Распределение с одним четким пиком известно как унимодальное, а распределение с двумя четкими пиками называется бимодальным. Единственное пиковое симметричное распределение в центре называется колоколообразным.
-
Асимметрия — в некоторых распределениях может быть несколько наблюдений на одной стороне графика, а не на другой. Распределения, имеющие меньше наблюдений в сторону более низких значений, считаются искаженными; и распределения с меньшим количеством наблюдений в сторону более низких значений, как говорят, искажены влево.
-
Равномерный — когда набор наблюдений не имеет пика и имеет данные, равномерно распределенные по всему диапазону распределения, то распределение называется равномерным распределением.
Симметрия. При симметричном распределении график можно разделить в центре таким образом, чтобы каждая половина была зеркальным отражением другой.
Количество вершин. — Распределения с одним или несколькими пиками. Распределение с одним четким пиком известно как унимодальное, а распределение с двумя четкими пиками называется бимодальным. Единственное пиковое симметричное распределение в центре называется колоколообразным.
Асимметрия — в некоторых распределениях может быть несколько наблюдений на одной стороне графика, а не на другой. Распределения, имеющие меньше наблюдений в сторону более низких значений, считаются искаженными; и распределения с меньшим количеством наблюдений в сторону более низких значений, как говорят, искажены влево.
Равномерный — когда набор наблюдений не имеет пика и имеет данные, равномерно распределенные по всему диапазону распределения, то распределение называется равномерным распределением.
Необычные особенности
Общими необычными особенностями шаблонов данных являются пробелы и выбросы.
Пробелы — пропуски указывают на области распределения без наблюдений. На следующем рисунке есть пробел, поскольку в середине распределения нет наблюдений.
Выбросы — Распределения могут характеризоваться экстремальными значениями, которые сильно отличаются от другого набора данных наблюдений. Эти экстремальные значения считаются выбросами. На следующем рисунке показано распределение с выбросом.