Изменение формы данных в R — это изменение способа организации данных в строки и столбцы. Большая часть времени обработки данных в R выполняется путем принятия входных данных в качестве кадра данных. Легко извлечь данные из строк и столбцов фрейма данных, но бывают ситуации, когда нам нужен фрейм данных в формате, отличном от формата, в котором мы его получили. В R имеется много функций для разделения, объединения и изменения строк в столбцы и наоборот во фрейме данных.
Соединение столбцов и строк в фрейме данных
Мы можем объединить несколько векторов для создания фрейма данных с помощью функции cbind () . Также мы можем объединить два фрейма данных с помощью функции rbind () .
# Create vector objects. city <- c("Tampa","Seattle","Hartford","Denver") state <- c("FL","WA","CT","CO") zipcode <- c(33602,98104,06161,80294) # Combine above three vectors into one data frame. addresses <- cbind(city,state,zipcode) # Print a header. cat("# # # # The First data frame\n") # Print the data frame. print(addresses) # Create another data frame with similar columns new.address <- data.frame( city = c("Lowry","Charlotte"), state = c("CO","FL"), zipcode = c("80230","33949"), stringsAsFactors = FALSE ) # Print a header. cat("# # # The Second data frame\n") # Print the data frame. print(new.address) # Combine rows form both the data frames. all.addresses <- rbind(addresses,new.address) # Print a header. cat("# # # The combined data frame\n") # Print the result. print(all.addresses)
Когда мы выполняем приведенный выше код, он дает следующий результат —
# # # # The First data frame city state zipcode [1,] "Tampa" "FL" "33602" [2,] "Seattle" "WA" "98104" [3,] "Hartford" "CT" "6161" [4,] "Denver" "CO" "80294" # # # The Second data frame city state zipcode 1 Lowry CO 80230 2 Charlotte FL 33949 # # # The combined data frame city state zipcode 1 Tampa FL 33602 2 Seattle WA 98104 3 Hartford CT 6161 4 Denver CO 80294 5 Lowry CO 80230 6 Charlotte FL 33949
Объединение фреймов данных
Мы можем объединить два фрейма данных с помощью функции merge () . Кадры данных должны иметь одинаковые имена столбцов, в которых происходит слияние.
В приведенном ниже примере мы рассматриваем наборы данных о диабете у индийских женщин Пима, доступные в библиотеках с именами «MASS». мы объединяем два набора данных на основе значений артериального давления («bp») и индекса массы тела («bmi»). При выборе этих двух столбцов для слияния записи, в которых значения этих двух переменных совпадают в обоих наборах данных, объединяются в один фрейм данных.
library(MASS) merged.Pima <- merge(x = Pima.te, y = Pima.tr, by.x = c("bp", "bmi"), by.y = c("bp", "bmi") ) print(merged.Pima) nrow(merged.Pima)
Когда мы выполняем приведенный выше код, он дает следующий результат —
bp bmi npreg.x glu.x skin.x ped.x age.x type.x npreg.y glu.y skin.y ped.y 1 60 33.8 1 117 23 0.466 27 No 2 125 20 0.088 2 64 29.7 2 75 24 0.370 33 No 2 100 23 0.368 3 64 31.2 5 189 33 0.583 29 Yes 3 158 13 0.295 4 64 33.2 4 117 27 0.230 24 No 1 96 27 0.289 5 66 38.1 3 115 39 0.150 28 No 1 114 36 0.289 6 68 38.5 2 100 25 0.324 26 No 7 129 49 0.439 7 70 27.4 1 116 28 0.204 21 No 0 124 20 0.254 8 70 33.1 4 91 32 0.446 22 No 9 123 44 0.374 9 70 35.4 9 124 33 0.282 34 No 6 134 23 0.542 10 72 25.6 1 157 21 0.123 24 No 4 99 17 0.294 11 72 37.7 5 95 33 0.370 27 No 6 103 32 0.324 12 74 25.9 9 134 33 0.460 81 No 8 126 38 0.162 13 74 25.9 1 95 21 0.673 36 No 8 126 38 0.162 14 78 27.6 5 88 30 0.258 37 No 6 125 31 0.565 15 78 27.6 10 122 31 0.512 45 No 6 125 31 0.565 16 78 39.4 2 112 50 0.175 24 No 4 112 40 0.236 17 88 34.5 1 117 24 0.403 40 Yes 4 127 11 0.598 age.y type.y 1 31 No 2 21 No 3 24 No 4 21 No 5 21 No 6 43 Yes 7 36 Yes 8 40 No 9 29 Yes 10 28 No 11 55 No 12 39 No 13 39 No 14 49 Yes 15 49 Yes 16 38 No 17 28 No [1] 17
Плавки и литья
Один из наиболее интересных аспектов R-программирования — это изменение формы данных в несколько этапов для получения желаемой формы. Используемые для этого функции называются melt () и cast () .
Мы рассматриваем набор данных под названием корабли, присутствующий в библиотеке под названием «МАССА».
library(MASS) print(ships)
Когда мы выполняем приведенный выше код, он дает следующий результат —
type year period service incidents 1 A 60 60 127 0 2 A 60 75 63 0 3 A 65 60 1095 3 4 A 65 75 1095 4 5 A 70 60 1512 6 ............. ............. 8 A 75 75 2244 11 9 B 60 60 44882 39 10 B 60 75 17176 29 11 B 65 60 28609 58 ............ ............ 17 C 60 60 1179 1 18 C 60 75 552 1 19 C 65 60 781 0 ............ ............
Расплавить данные
Теперь мы объединяем данные, чтобы организовать их, преобразовывая все столбцы, кроме типа и года, в несколько строк.
molten.ships <- melt(ships, id = c("type","year")) print(molten.ships)
Когда мы выполняем приведенный выше код, он дает следующий результат —
type year variable value 1 A 60 period 60 2 A 60 period 75 3 A 65 period 60 4 A 65 period 75 ............ ............ 9 B 60 period 60 10 B 60 period 75 11 B 65 period 60 12 B 65 period 75 13 B 70 period 60 ........... ........... 41 A 60 service 127 42 A 60 service 63 43 A 65 service 1095 ........... ........... 70 D 70 service 1208 71 D 75 service 0 72 D 75 service 2051 73 E 60 service 45 74 E 60 service 0 75 E 65 service 789 ........... ........... 101 C 70 incidents 6 102 C 70 incidents 2 103 C 75 incidents 0 104 C 75 incidents 1 105 D 60 incidents 0 106 D 60 incidents 0 ........... ...........
В ролях расплавленных данных
Мы можем преобразовать расплавленные данные в новую форму, в которой создается совокупность кораблей каждого типа за каждый год. Это делается с помощью функции cast () .
recasted.ship <- cast(molten.ships, type+year~variable,sum) print(recasted.ship)
Когда мы выполняем приведенный выше код, он дает следующий результат —