В этой главе мы узнаем о реализации XOR с использованием TensorFlow. Прежде чем начать с реализации XOR в TensorFlow, давайте посмотрим значения таблицы XOR. Это поможет нам понять процесс шифрования и дешифрования.
В | A XOR B | |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Метод шифрования XOR в основном используется для шифрования данных, которые трудно взломать методом грубой силы, т. Е. Путем генерации случайных ключей шифрования, которые соответствуют соответствующему ключу.
Концепция реализации с XOR Cipher состоит в том, чтобы определить ключ шифрования XOR и затем выполнить операцию XOR символов в указанной строке с этим ключом, который пользователь пытается зашифровать. Теперь мы сосредоточимся на реализации XOR с использованием TensorFlow, которая упоминается ниже —
#Declaring necessary modules import tensorflow as tf import numpy as np """ A simple numpy implementation of a XOR gate to understand the backpropagation algorithm """ x = tf.placeholder(tf.float64,shape = [4,2],name = "x") #declaring a place holder for input x y = tf.placeholder(tf.float64,shape = [4,1],name = "y") #declaring a place holder for desired output y m = np.shape(x)[0]#number of training examples n = np.shape(x)[1]#number of features hidden_s = 2 #number of nodes in the hidden layer l_r = 1#learning rate initialization theta1 = tf.cast(tf.Variable(tf.random_normal([3,hidden_s]),name = "theta1"),tf.float64) theta2 = tf.cast(tf.Variable(tf.random_normal([hidden_s+1,1]),name = "theta2"),tf.float64) #conducting forward propagation a1 = tf.concat([np.c_[np.ones(x.shape[0])],x],1) #the weights of the first layer are multiplied by the input of the first layer z1 = tf.matmul(a1,theta1) #the input of the second layer is the output of the first layer, passed through the activation function and column of biases is added a2 = tf.concat([np.c_[np.ones(x.shape[0])],tf.sigmoid(z1)],1) #the input of the second layer is multiplied by the weights z3 = tf.matmul(a2,theta2) #the output is passed through the activation function to obtain the final probability h3 = tf.sigmoid(z3) cost_func = -tf.reduce_sum(y*tf.log(h3)+(1-y)*tf.log(1-h3),axis = 1) #built in tensorflow optimizer that conducts gradient descent using specified learning rate to obtain theta values optimiser = tf.train.GradientDescentOptimizer(learning_rate = l_r).minimize(cost_func) #setting required X and Y values to perform XOR operation X = [[0,0],[0,1],[1,0],[1,1]] Y = [[0],[1],[1],[0]] #initializing all variables, creating a session and running a tensorflow session init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) #running gradient descent for each iteration and printing the hypothesis obtained using the updated theta values for i in range(100000): sess.run(optimiser, feed_dict = {x:X,y:Y})#setting place holder values using feed_dict if i%100==0: print("Epoch:",i) print("Hyp:",sess.run(h3,feed_dict = {x:X,y:Y}))
Выше строка кода генерирует вывод, как показано на скриншоте ниже —