TensorFlow включает в себя специальную функцию распознавания изображений, и эти изображения хранятся в определенной папке. С относительно одинаковыми изображениями будет легко реализовать эту логику в целях безопасности.
Структура папок реализации кода распознавания изображений показана ниже:
Dataset_image включает в себя связанные изображения, которые необходимо загрузить. Мы сосредоточимся на распознавании изображений с нашим логотипом, определенным в нем. Изображения загружаются с помощью скрипта «load_data.py», который помогает вести заметки о различных модулях распознавания изображений внутри них.
import pickle from sklearn.model_selection import train_test_split from scipy import misc import numpy as np import os label = os.listdir("dataset_image") label = label[1:] dataset = [] for image_label in label: images = os.listdir("dataset_image/"+image_label) for image in images: img = misc.imread("dataset_image/"+image_label+"/"+image) img = misc.imresize(img, (64, 64)) dataset.append((img,image_label)) X = [] Y = [] for input,image_label in dataset: X.append(input) Y.append(label.index(image_label)) X = np.array(X) Y = np.array(Y) X_train,y_train, = X,Y data_set = (X_train,y_train) save_label = open("int_to_word_out.pickle","wb") pickle.dump(label, save_label) save_label.close()
Обучение изображений помогает хранить распознаваемые шаблоны в указанной папке.
import numpy import matplotlib.pyplot as plt from keras.layers import Dropout from keras.layers import Flatten from keras.constraints import maxnorm from keras.optimizers import SGD from keras.layers import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.utils import np_utils from keras import backend as K import load_data from keras.models import Sequential from keras.layers import Dense import keras K.set_image_dim_ordering('tf') # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load data (X_train,y_train) = load_data.data_set # normalize inputs from 0-255 to 0.0-1.0 X_train = X_train.astype('float32') #X_test = X_test.astype('float32') X_train = X_train / 255.0 #X_test = X_test / 255.0 # one hot encode outputs y_train = np_utils.to_categorical(y_train) #y_test = np_utils.to_categorical(y_test) num_classes = y_train.shape[1] # Create the model model = Sequential() model.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), padding = 'same', activation = 'relu', kernel_constraint = maxnorm(3))) model.add(Dropout(0.2)) model.add(Conv2D(32, (3, 3), activation = 'relu', padding = 'same', kernel_constraint = maxnorm(3))) model.add(MaxPooling2D(pool_size = (2, 2))) model.add(Flatten()) model.add(Dense(512, activation = 'relu', kernel_constraint = maxnorm(3))) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation = 'softmax')) # Compile model epochs = 10 lrate = 0.01 decay = lrate/epochs sgd = SGD(lr = lrate, momentum = 0.9, decay = decay, nesterov = False) model.compile(loss = 'categorical_crossentropy', optimizer = sgd, metrics = ['accuracy']) print(model.summary()) #callbacks = [keras.callbacks.EarlyStopping( monitor = 'val_loss', min_delta = 0, patience = 0, verbose = 0, mode = 'auto')] callbacks = [keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq = 0, batch_size = 32, write_graph = True, write_grads = False, write_images = True, embeddings_freq = 0, embeddings_layer_names = None, embeddings_metadata = None)] # Fit the model model.fit(X_train, y_train, epochs = epochs, batch_size = 32,shuffle = True,callbacks = callbacks) # Final evaluation of the model scores = model.evaluate(X_train, y_train, verbose = 0) print("Accuracy: %.2f%%" % (scores[1]*100)) # serialize model to JSONx model_json = model.to_json() with open("model_face.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("model_face.h5") print("Saved model to disk")
Выше строка кода генерирует вывод, как показано ниже —