Учебники

TensorFlow — Формирование графиков

Дифференциальное уравнение в частных производных (PDE) — это дифференциальное уравнение, которое включает в себя частные производные с неизвестной функцией нескольких независимых переменных. Что касается дифференциальных уравнений в частных производных, мы сосредоточимся на создании новых графиков.

Предположим, есть пруд размером 500 * 500 кв.

N = 500

Теперь мы вычислим уравнение в частных производных и сформируем соответствующий граф, используя его. Рассмотрим шаги, приведенные ниже для вычисления графа.

Шаг 1 — Импорт библиотек для симуляции.

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

Шаг 2 — Включите функции для преобразования двумерного массива в ядро ​​свертки и упрощенную операцию свертки 2D.

def make_kernel(a):
   a = np.asarray(a)
   a = a.reshape(list(a.shape) + [1,1])
   return tf.constant(a, dtype=1)

def simple_conv(x, k):
   """A simplified 2D convolution operation"""
   x = tf.expand_dims(tf.expand_dims(x, 0), -1)
   y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding = 'SAME')
   return y[0, :, :, 0]

def laplace(x):
   """Compute the 2D laplacian of an array"""
   laplace_k = make_kernel([[0.5, 1.0, 0.5], [1.0, -6., 1.0], [0.5, 1.0, 0.5]])
   return simple_conv(x, laplace_k)
   
sess = tf.InteractiveSession()

Шаг 3 — Включите количество итераций и вычислите график для отображения записей соответственно.

N = 500

# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype = np.float32)
ut_init = np.zeros([N, N], dtype = np.float32)

# Some rain drops hit a pond at random points
for n in range(100):
   a,b = np.random.randint(0, N, 2)
   u_init[a,b] = np.random.uniform()

plt.imshow(u_init)
plt.show()

# Parameters:
# eps -- time resolution
# damping -- wave damping
eps = tf.placeholder(tf.float32, shape = ())
damping = tf.placeholder(tf.float32, shape = ())

# Create variables for simulation state
U = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

# Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

# Operation to update the state
step = tf.group(U.assign(U_), Ut.assign(Ut_))

# Initialize state to initial conditions
tf.initialize_all_variables().run()

# Run 1000 steps of PDE
for i in range(1000):
   # Step simulation
   step.run({eps: 0.03, damping: 0.04})
   
   # Visualize every 50 steps
   if i % 500 == 0:
      plt.imshow(U.eval())
      plt.show()

Графики построены, как показано ниже —

Формирование графиков