Булева алгебра используется для анализа и упрощения цифровых (логических) схем. Он использует только двоичные числа, то есть 0 и 1. Он также называется двоичной алгеброй или логической алгеброй . Булева алгебра была изобретена Джорджем Булем в 1854 году.
Правило в булевой алгебре
Ниже приведены важные правила, используемые в булевой алгебре.
-
Используемая переменная может иметь только два значения. Двоичный 1 для высокого и двоичный 0 для низкого.
-
Дополнение к переменной представлено надстрочной точкой (-). Таким образом, дополнение переменной B представляется как , Таким образом, если B = 0, то = 1 и B = 1 тогда = 0
-
ORing переменных представлен знаком плюс (+) между ними. Например, OR для A, B, C представлен как A + B + C.
-
Логическое И для двух или более переменных представляется записью точки между ними, такой как ABC. Иногда точка может быть опущена, как ABC.
Используемая переменная может иметь только два значения. Двоичный 1 для высокого и двоичный 0 для низкого.
Дополнение к переменной представлено надстрочной точкой (-). Таким образом, дополнение переменной B представляется как , Таким образом, если B = 0, то = 1 и B = 1 тогда = 0
ORing переменных представлен знаком плюс (+) между ними. Например, OR для A, B, C представлен как A + B + C.
Логическое И для двух или более переменных представляется записью точки между ними, такой как ABC. Иногда точка может быть опущена, как ABC.
Булевы законы
Существует шесть типов булевых законов.
Коммутативное право
Любая двоичная операция, которая удовлетворяет следующему выражению, называется коммутативной операцией.
Коммутативный закон гласит, что изменение последовательности переменных не влияет на выход логической схемы.
Ассоциативный закон
Этот закон гласит, что порядок, в котором выполняются логические операции, не имеет значения, поскольку их эффект одинаков.
Распределительное право
Дистрибутивное право устанавливает следующее условие.
И закон
Эти законы используют операцию AND. Поэтому они называются законами И.
ИЛИ закон
Эти законы используют операцию ИЛИ. Поэтому они называются законами ИЛИ .
Закон об обращении
Этот закон использует операцию НЕ. Закон обращения гласит, что двойная инверсия переменной приводит к самой исходной переменной.
Важные булевы теоремы
Ниже приведены несколько важных булевых теорем.