Продолжая работу с Programming Collection Intelligence (PCI), в следующем упражнении использовались оценки расстояния, чтобы определить список блогов на основе слов, используемых в соответствующем блоге.
Я уже нашел Encog в качестве основы для алгоритмов AI / Machine Learning, для этого упражнения мне понадобились программа для чтения RSS и анализатор HTML.
В итоге я использовал 2 библиотеки:
Для общих других утилит и манипуляций с коллекцией я использовал:
Я держал список блогов коротким, включал некоторых блоггеров, за которыми я следил, просто чтобы сделать тестирование быстрым, пришлось немного изменить% от реализации в (PCI), но все же получил желаемый результат.
Используемые блоги:
- http://blog.guykawasaki.com/index.rdf
- http://blog.outer-court.com/rss.xml
- http://flagrantdisregard.com/index.php/feed/
- http://gizmodo.com/index.xml
- http://googleblog.blogspot.com/rss.xml
- http://radar.oreilly.com/index.rdf
- http://www.wired.com/rss/index.xml
- http://feeds.feedburner.com/codinghorror
- http://feeds.feedburner.com/joelonsoftware
- http://martinfowler.com/feed.atom
- http://www.briandupreez.net/feeds/posts/default
Для реализации я просто выбрал основной класс и класс читателя:
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
package net.briandupreez.pci.data; import com.google.common.base.Predicates; import com.google.common.collect.Collections2; import com.sun.syndication.feed.synd.SyndCategoryImpl; import com.sun.syndication.feed.synd.SyndContent; import com.sun.syndication.feed.synd.SyndEntryImpl; import com.sun.syndication.feed.synd.SyndFeed; import com.sun.syndication.io.SyndFeedInput; import com.sun.syndication.io.XmlReader; import org.jsoup.Jsoup; import org.jsoup.nodes.Document; import org.jsoup.nodes.Element; import org.jsoup.select.Elements; import java.net.URL; import java.util.*; public class FeedReader { @SuppressWarnings ( "unchecked" ) public static Set<String> determineAllUniqueWords( final String url, final Set<String> blogWordList) { boolean ok = false ; try { URL feedUrl = new URL(url); SyndFeedInput input = new SyndFeedInput(); SyndFeed feed = input.build( new XmlReader(feedUrl)); final List<SyndEntryImpl> entries = feed.getEntries(); for ( final SyndEntryImpl entry : entries) { blogWordList.addAll(cleanAndSplitString(entry.getTitle())); blogWordList.addAll(doCategories(entry)); blogWordList.addAll(doDescription(entry)); blogWordList.addAll(doContent(entry)); } ok = true ; } catch (Exception ex) { ex.printStackTrace(); System.out.println( "ERROR: " + url + "\n" + ex.getMessage()); } if (!ok) { System.out.println( "FeedReader reads and prints any RSS/Atom feed type." ); System.out.println( "The first parameter must be the URL of the feed to read." ); } return blogWordList; } @SuppressWarnings ( "unchecked" ) private static List<String> doContent( final SyndEntryImpl entry) { List<String> blogWordList = new ArrayList<>(); final List<SyndContent> contents = entry.getContents(); if (contents != null ) { for ( final SyndContent syndContent : contents) { if ( "text/html" .equals(syndContent.getMode())) { blogWordList.addAll(stripHtmlAndAddText(syndContent)); } else { blogWordList.addAll(cleanAndSplitString(syndContent.getValue())); } } } return blogWordList; } private static List<String> doDescription( final SyndEntryImpl entry) { final List<String> blogWordList = new ArrayList<>(); final SyndContent description = entry.getDescription(); if (description != null ) { if ( "text/html" .equals(description.getType())) { blogWordList.addAll(stripHtmlAndAddText(description)); } else { blogWordList.addAll(cleanAndSplitString(description.getValue())); } } return blogWordList; } @SuppressWarnings ( "unchecked" ) private static List<String> doCategories( final SyndEntryImpl entry) { final List<String> blogWordList = new ArrayList<>(); final List<SyndCategoryImpl> categories = entry.getCategories(); for ( final SyndCategoryImpl category : categories) { blogWordList.add(category.getName().toLowerCase()); } return blogWordList; } private static List<String> stripHtmlAndAddText( final SyndContent description) { String html = description.getValue(); Document document = Jsoup.parse(html); Elements elements = document.getAllElements(); final List<String> allWords = new ArrayList<>(); for ( final Element element : elements) { allWords.addAll(cleanAndSplitString(element.text())); } return allWords; } private static List<String> cleanAndSplitString( final String input) { if (input != null ) { final String[] dic = input.toLowerCase().replaceAll( "\\p{Punct}" , "" ).replaceAll( "\\p{Digit}" , "" ).split( "\\s+" ); return Arrays.asList(dic); } return new ArrayList<>(); } @SuppressWarnings ( "unchecked" ) public static Map<String, Double> countWords( final String url, final Set<String> blogWords) { final Map<String, Double> resultMap = new TreeMap<>(); try { URL feedUrl = new URL(url); SyndFeedInput input = new SyndFeedInput(); SyndFeed feed = input.build( new XmlReader(feedUrl)); final List<SyndEntryImpl> entries = feed.getEntries(); final List<String> allBlogWords = new ArrayList<>(); for ( final SyndEntryImpl entry : entries) { allBlogWords.addAll(cleanAndSplitString(entry.getTitle())); allBlogWords.addAll(doCategories(entry)); allBlogWords.addAll(doDescription(entry)); allBlogWords.addAll(doContent(entry)); } for ( final String word : blogWords) { resultMap.put(word, ( double ) Collections2.filter(allBlogWords, Predicates.equalTo(word)).size()); } } catch (Exception ex) { ex.printStackTrace(); System.out.println( "ERROR: " + url + "\n" + ex.getMessage()); } return resultMap; } } |
Главный:
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
package net.briandupreez.pci.data; import com.google.common.base.Predicates; import com.google.common.collect.Maps; import com.google.common.io.Resources; import com.google.common.primitives.Doubles; import org.encog.ml.MLCluster; import org.encog.ml.data.MLDataPair; import org.encog.ml.data.MLDataSet; import org.encog.ml.data.basic.BasicMLData; import org.encog.ml.data.basic.BasicMLDataPair; import org.encog.ml.data.basic.BasicMLDataSet; import org.encog.ml.kmeans.KMeansClustering; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.*; public class FeedReaderMain { public static void main(String[] args) { final FeedReaderMain feedReaderMain = new FeedReaderMain(); try { feedReaderMain.run(); } catch (IOException e) { e.printStackTrace(); } } public void run() throws IOException { final String file = Resources.getResource( "short-feedlist.txt" ).getFile(); final Set<String> blogWords = determineWordCompleteList(file); final Map<String, Map<String, Double>> blogWordCount = countWordsPerBlog(file, blogWords); //strip out the outlying words stripOutlyingWords(blogWords, blogWordCount); performCusteringAndDisplay(blogWordCount); } private void performCusteringAndDisplay( final Map<String, Map<String, Double>> blogWordCount) { final BasicMLDataSet set = new BasicMLDataSet(); final Map<String, List<Double>> inputMap = new HashMap<>(); for ( final Map.Entry<String, Map<String, Double>> entry : blogWordCount.entrySet()) { final Map<String, Double> mainValues = entry.getValue(); final double [] elements = Doubles.toArray(mainValues.values()); List<Double> listInput = Doubles.asList(elements); inputMap.put(entry.getKey(), listInput); set.add( new BasicMLData(elements)); } final KMeansClustering kmeans = new KMeansClustering( 3 , set); kmeans.iteration( 150 ); // Display the cluster int i = 1 ; for ( final MLCluster cluster : kmeans.getClusters()) { System.out.println( "*** Cluster " + (i++) + " ***" ); final MLDataSet ds = cluster.createDataSet(); final MLDataPair pair = BasicMLDataPair.createPair( ds.getInputSize(), ds.getIdealSize()); for ( int j = 0 ; j < ds.getRecordCount(); j++) { ds.getRecord(j, pair); List<Double> listInput = Doubles.asList(pair.getInputArray()); System.out.println(Maps.filterValues(inputMap, Predicates.equalTo(listInput)).keySet().toString()); } } } private Map<String, Map<String, Double>> countWordsPerBlog(String file, Set<String> blogWords) throws IOException { BufferedReader reader; String line; reader = new BufferedReader( new FileReader(file)); final Map<String, Map<String, Double>> blogWordCount = new HashMap<>(); while ((line = reader.readLine()) != null ) { final Map<String, Double> wordCounts = FeedReader.countWords(line, blogWords); blogWordCount.put(line, wordCounts); } return blogWordCount; } private Set<String> determineWordCompleteList( final String file) throws IOException { FileReader fileReader = new FileReader(file); BufferedReader reader = new BufferedReader(fileReader); String line; Set<String> blogWords = new HashSet<>(); while ((line = reader.readLine()) != null ) { blogWords = FeedReader.determineAllUniqueWords(line, blogWords); System.out.println( "Size: " + blogWords.size()); } return blogWords; } private void stripOutlyingWords( final Set<String> blogWords, final Map<String, Map<String, Double>> blogWordCount) { final Iterator<String> wordIter = blogWords.iterator(); final double listSize = blogWords.size(); while (wordIter.hasNext()) { final String word = wordIter.next(); double wordCount = 0 ; for ( final Map<String, Double> values : blogWordCount.values()) { wordCount += values.get(word) != null ? values.get(word) : 0 ; } double percentage = (wordCount / listSize) * 100 ; if (percentage < 0.1 || percentage > 20 || word.length() < 3 ) { wordIter.remove(); for ( final Map<String, Double> values : blogWordCount.values()) { values.remove(word); } } else { System.out.println( "\t keeping: " + word + " Percentage:" + percentage); } } } } |
Результаты:
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
*** Cluster 1 *** [http: //www .briandupreez.net /feeds/posts/default ] *** Cluster 2 *** [http: //blog .guykawasaki.com /index .rdf] [http: //radar .oreilly.com /index .rdf] [http: //googleblog .blogspot.com /rss .xml] [http: //blog .outer-court.com /rss .xml] [http: //gizmodo .com /index .xml] [http: //flagrantdisregard .com /index .php /feed/ ] [http: //www .wired.com /rss/index .xml] *** Cluster 3 *** [http: //feeds .feedburner.com /joelonsoftware ] [http: //feeds .feedburner.com /codinghorror ] [http: //martinfowler .com /feed .atom] |