Учебники

Python Pandas — Статистические Функции

Статистические методы помогают в понимании и анализе поведения данных. Теперь мы изучим несколько статистических функций, которые мы можем применить к объектам Pandas.

Percent_change

Series, DatFrames и Panel, все имеют функцию pct_change () . Эта функция сравнивает каждый элемент с его предыдущим элементом и вычисляет процент изменений.

Live Demo

import pandas as pd
import numpy as np
s = pd.Series([1,2,3,4,5,4])
print s.pct_change()

df = pd.DataFrame(np.random.randn(5, 2))
print df.pct_change()

Его вывод выглядит следующим образом —

0        NaN
1   1.000000
2   0.500000
3   0.333333
4   0.250000
5  -0.200000
dtype: float64

            0          1
0         NaN        NaN
1  -15.151902   0.174730
2  -0.746374   -1.449088
3  -3.582229   -3.165836
4   15.601150  -1.860434

По умолчанию pct_change () работает со столбцами; если вы хотите применить ту же строку, используйте аргумент axis = 1 () .

ковариации

Ковариация применяется к данным ряда. Объект Series имеет метод cov для вычисления ковариации между объектами серии. NA будет исключен автоматически.

Cov Series

Live Demo

import pandas as pd
import numpy as np
s1 = pd.Series(np.random.randn(10))
s2 = pd.Series(np.random.randn(10))
print s1.cov(s2)

Его вывод выглядит следующим образом —

-0.12978405324

Метод ковариации при применении к DataFrame вычисляет значение cov для всех столбцов.

Live Demo

import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
print frame['a'].cov(frame['b'])
print frame.cov()

Его вывод выглядит следующим образом —

-0.58312921152741437

           a           b           c           d            e
a   1.780628   -0.583129   -0.185575    0.003679    -0.136558
b  -0.583129    1.297011    0.136530   -0.523719     0.251064
c  -0.185575    0.136530    0.915227   -0.053881    -0.058926
d   0.003679   -0.523719   -0.053881    1.521426    -0.487694
e  -0.136558    0.251064   -0.058926   -0.487694     0.960761

Примечание. Обратите внимание на значение cov между столбцами a и b в первом операторе, и это же значение, возвращаемое параметром cov в DataFrame.

корреляция

Корреляция показывает линейные отношения между любыми двумя массивами значений (рядами). Есть несколько методов для вычисления корреляции, таких как Pearson (по умолчанию), Spearman и Kendall.

Live Demo

import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])

print frame['a'].corr(frame['b'])
print frame.corr()

Его вывод выглядит следующим образом —

-0.383712785514

           a          b          c          d           e
a   1.000000  -0.383713  -0.145368   0.002235   -0.104405
b  -0.383713   1.000000   0.125311  -0.372821    0.224908
c  -0.145368   0.125311   1.000000  -0.045661   -0.062840
d   0.002235  -0.372821  -0.045661   1.000000   -0.403380
e  -0.104405   0.224908  -0.062840  -0.403380    1.000000

Если в DataFrame присутствует какой-либо нечисловой столбец, он автоматически исключается.

Рейтинг данных

Ранжирование данных производит ранжирование для каждого элемента в массиве элементов. В случае связей присваивает средний ранг.

Live Demo

import pandas as pd
import numpy as np

s = pd.Series(np.random.np.random.randn(5), index=list('abcde'))
s['d'] = s['b'] # so there's a tie
print s.rank()

Его вывод выглядит следующим образом —

a  1.0
b  3.5
c  2.0
d  3.5
e  5.0
dtype: float64

Ранг необязательно принимает параметр по возрастанию, который по умолчанию имеет значение true; когда ложь, данные ранжируются в обратном порядке, с большими значениями присваивается меньший ранг.

Ранг поддерживает различные методы разрыва связей, указанные параметром метода —

средний — средний ранг связанной группы

min — самый низкий ранг в группе

max — высший ранг в группе

first — ранги присваиваются в порядке их появления в массиве