В этой главе мы сосредоточимся на создании монастыря с нуля. Это подразумевает создание соответствующего монастыря или образца нейронной сети с факелом.
Шаг 1
Создайте необходимый класс с соответствующими параметрами. Параметры включают веса со случайным значением.
class Neural_Network(nn.Module): def __init__(self, ): super(Neural_Network, self).__init__() self.inputSize = 2 self.outputSize = 1 self.hiddenSize = 3 # weights self.W1 = torch.randn(self.inputSize, self.hiddenSize) # 3 X 2 tensor self.W2 = torch.randn(self.hiddenSize, self.outputSize) # 3 X 1 tensor
Шаг 2
Создайте шаблон функции прямой связи с сигмовидными функциями.
def forward(self, X): self.z = torch.matmul(X, self.W1) # 3 X 3 ".dot" does not broadcast in PyTorch self.z2 = self.sigmoid(self.z) # activation function self.z3 = torch.matmul(self.z2, self.W2) o = self.sigmoid(self.z3) # final activation function return o def sigmoid(self, s): return 1 / (1 + torch.exp(-s)) def sigmoidPrime(self, s): # derivative of sigmoid return s * (1 - s) def backward(self, X, y, o): self.o_error = y - o # error in output self.o_delta = self.o_error * self.sigmoidPrime(o) # derivative of sig to error self.z2_error = torch.matmul(self.o_delta, torch.t(self.W2)) self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2) self.W1 + = torch.matmul(torch.t(X), self.z2_delta) self.W2 + = torch.matmul(torch.t(self.z2), self.o_delta)
Шаг 3
Создайте модель обучения и прогнозирования, как указано ниже —